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Abstract, We shall summarize studies on the dynamics of monatomic liquids,
mainly liquid metals, using inelastic neutron scattering techniques, Many micro-
scopic properties of disordered systems like liquids which are not accessible by other
techniques can be investigated by properly designed neuiron scattering experiments.
Details of the physics of diffusion processes, that is of single-particle motion, can
be revealed by incoherent quasi-elastic scattering. Coherent scattering can explore
relative motions or collective modes and their damping mechanism. Beth aspects
will be illustrated with a few examples of recent experiments.

1. Introduction

Although our general qualitative understanding of the liquid state of matter seems to
be well developed the goal of eventually tracing the properfies seen on macroscopic
and microscopic scales back to the properties of the atomic constituents and the cor-
responding interatomic potentials is only slowly progressing.

An appropriate tool for the description of liquid properties on a microscopic scale
is the pair correlation formalism. The static properties, the structures of liquids, can
be revealed from structure factor measurements using x-ray and neutron diffraction
techniques. As well as supplying complementary information to x-ray data on the
structure neutrons can also offer the unique possibility of supplying detailed infor-
mation on the atomic motions on the relevant time scale, that is on time-dependent
correlation functions in the picosecond range.

Inelastic neutron scattering techniques have been essentially applied to the study
of the dynamics of simple liquids like rare gas liquids and liquid metals. Liquid metals
are inferesting model systems because of their large liquid range.

Due to the lack of sufficient intensity and the need for suitable experimental tech-
niques to determine absolute scattering cross sections it was only during the last two
decades that sufficiently accurate measurements could be performed. It is the purpose
of this article to summarize sorme more recent experiments on the dynamics of liquid
metals.

1.1. Neutron scattering techniques

A neutron seattering experiment on an isotropic monatomic sample can measure the
double differential scattering cross section:
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Here kg, k are the incident and scattered wavevectors of the neutron and

ﬁ'2 2 2
hQ = hlko—k)  hw= (k- &)

are the momentum and energy transfers in the scattering process.

If the sample is isotropic, the direction of Q is unimportant and @ can be replaced
by its magnitude. 5;,. and S, are the dynamic structure factors describing the effect
of single-particle motion and the relative motion of two particles respectively on the
scattering. The dynamic structure factors are Fourier transforms of the corresponding
spacetime correlation functions of van Hove.

If 0., and oy, can be varied or if oy, is due to spin-flip scattering S, _ and S,
can be separated. Information on single-particle dynamics can be extracted from S, .
and on collective dynamies from S_,

In practice the measured data must be corrected for background, sample environ-
ment, multiple scattering, instrument resolution etc before the true single-scattering
data are available. This is now a well established procedure for which computer pro-
gram packages exist,

2. Physics of diffusion processes

Incoherent quasi-elastic scattering is especially useful for studying single-particle dif-
fusion. In the simple case of Brownlan motion S,.(Q,w) takes the form

1 D
Sinc(QJw) ﬁ:ﬁ . ’ LALE L e a - (2)

which is more generally valid for @ extrapolated to zero.
The diffusion coefficient I’ can be determined by extrapolation:

1
D= s, @0 . ®)

As an example figure 1 shows data on liquid sodium at T = 800 K. The D values
for liquid Na from neutron scattering are in quite good agreement with more recent
results from the pulsed NMR technique [1] although the latter data are more restricted
in their temperature range, and interpretation is less direct.

In principle with neutrons one could examine the diffusion process in more detail.
And indeed it was shown by Morkel ef al [2] in a careful analysis of the measured
Sinc(@, w) of liquid Na at different temperatures that the basic mechanism of diffusion
is more complex. 5, (Q,w) with increasing @ deviates from a Lorentzian. Figure 2
shows the halfwidth of the quasi-elastic S;,. of Na divided by D@Q* at 800 K and a
corresponding effect is seen in the reduced peak height. These data confirm similar

deviations found in molecular dynamics simulations [3] and they could be explained
by mode coupling theories [4].
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Figure 1. Determination of the diffusion coel-  Figure 2. Reduced halfwidth y(Q) of 8i. (@, w)
ficient D of liquid sodium at T = 803 K by the  of liquid sodium at 803 K.
extrapolation procedure.

The appropriate memory function for describing the effect is the velocity autocor-
relation function of a moving particle in a liquid 2(r) = (v(0)v(r)}. For Brownian
 motion z(7) decays exponentially. However, simulations and mede coupling calcu-
lations have already shown that, for hard sphere liquids, after an initial exponential
decay, z(r) decays more slowly, that is it decays according to a power law z{r) = 773/2,
The motion pattern is not chaotic but has a vortex structure. These vortices are mi-
croscopic shear excitations which have moderately long lifetimes and delay the decay
of z(r). For a t~%/2 decay the excitation spectrum should not be a Lorentzian around
w = 0 as predicted for Brownian motion, but it should have a square root cusp at
w = {0, i.e. no horizontal but a vertical tangent.

The sodium data are in qualitative agreement with this picture as shown in fig-
ure 3. From the slope of z{w) the shear viscosity follows in good agreement with
values from the literature. These memory effects also probably play an important tole
in the microscopic behaviour of more complex liguids. They were found, for example,
in liquid argon and dense H, [5] by Verkerk ef al. This technique is now used when
searching for deviations from the simple mode-coupling picture. An atom in a dense
liguid does not perform Brownian motion—a free flight interrupted by stochastic col-
lisions. It rattles in a cage formed by its neighbours’ exciting shear vortices before it
finds a way to change its position.

3. Collective atomic motions (inelastic neutron scattering)

Fortunately more data on coherent scattering samples are available. Coherent neutron
scattering yields information on the relative arrangement and relative motion of atoms
in a liquid. Without an energy analysis the static structure factor S(Q) and hence
the static pair distribution g(r) is obtained from which, in principle, a pair potential
can be extracted. An energy analysis supplies information on the collective motions.
In the generalized hydrodynamic theory of relaxation in liquids the dynamic struc-
ture factor S(Q,w) can be written
ke TQ? Re[M{Q,w
S(Q?“’) = B;”‘f ‘wg — ME\J((C?,&J))]— w22 wg = kBTQz/MS(Q)' (4)
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Figure 3. Frequency distribution z{w} of liquid sodium at T = 803 K and small w.

Here M(Q,w) is a viscous damping function for excitations, or more formally the
Laplace transform of the memory function for the longitudinal current~current corre-
lation. M(Q,w) is unknown and complex; however, in principle some information on
M(Q,w) should be directly extractable from the experimental data.

During the last 30 years many articles have been written, suggesting more or less
simple approximations for M(Q,w). (For example the visco-elastic model assuming
an exponential decay of M governed by one relaxation time.)

On the other hand most of the neutron experiments have searched for propagating
modes, essentially by trying to detect peaks in the S{Q,w) spectrum. Copley and
Lovesey achieved some encouraging results on liquid Rb [6]. These data have served
as a test case for several molecular dynamics simulations (7).

An extensive analysis of the dynamics of liquid lead and bismuth was performed
recently by Larsson et al [8] using neutron scattering and computer simulation data.
The simulation data are in reasonable agreement with the experimental data for those
@-values where a comparison is possible. The authors concentrated on an analysis of
the memory function which in the time domain showed a rapid decay at short times
and a tail at longer times, suggesting at least the need for two relaxation times in
models for the memory function as was recognized earlier by Levesque ef af [9]. The
Laplace transform at w = ( can be interpreted as a generalized longitudinal viscosity

71(Q) = M(Q,0)/Q* = xv{S(Q,0)/S(QY (5)

which if temperature fluctuations can be neglected extrapolates to the well known hy-
drodynamic limit 4,(0,0) = 4, + 75. The computer simulations made the transver-
sal current correlation and therefore the generalized shear viscosity available. For
increasing @@ there is a tendency for the generalized longitudinal and shear viscosity
to approach each other (in fact their ratio oscillates) whereas for Q@ < Q, (Q, is the
position of the maximum of S(Q)}) there is a marked difference. From this type of
comparison it was concluded that for Q > @, eflects of self-motion are dominant and
any collective activity may be only of short range in space and time.

There is some interesting structure in v,{Q) in the vicinity of the maximum of the
structure factor. Balucani et al [10] found an indication of a similar weak anomaly
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in simulations of liquid rubidium. However, in experimental data on liquid caesium
[11} nothing particular shows up in the vicinity of the position of the structure factor
maximum.

3.1. Experimental resulls on liquid Cs

The experiments on liquid Cs were performed on three-axes spectrometers at ILL and
FRM Munich. Q-ranging from 0.2 to 2.5 A~ was covered (S(Q),,,, at Qg = 1.4 A-1).
The measured intensities were corrected in the usual way to obtain absolute S(Q,w)
data. Several of the resulting data sets are plotted in fizure 4. The correction for the
small incoherent scattering contribution leads to relative large errors at small ( and
w, but did not seriously affect the inelastic region.

The smooth curves are fits with a memory function ansatz with two relaxation
times. The data are still sufficiently accurate to derive a number of microscopic
quantities of the liquid. For example the longitudinal current correlation spectra are
illustrated in figure 5. The peak positions of these spectra which correspond to the
dispersion of the excitation spectra at small @ are plotted in figure 6.
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Fignre 4. Dynamic structure factor 5(@,w) of liquid caestum at T = 308 K: full
dot, experimental data; broken line, parametrized form.
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FPigure 5. Longitudinal current correlation J; (Q,w) of liguid caesium at T = 308 K.

One can see a clear enhancement of the slope of this disperson compared with
the acoustic sound velocity which is known for Cs at T = 308 K to be 965 m s~!
and should be the hydrodynamic limit of w,, (@). This enhancement is believed to be
caused by the onset of shear relaxation at higher frequencies.

Irom the generalized hydrodynamic memory function

T T,
M@Qw)=(y— 1)wa?ﬁ +(w} - ‘Yw%)l—_f;; (6)
n

where 7 and 7, are the relaxation times for heat diffusion and viscous damping, the
disperson of propagating modes can be derived. As long as wry >3 1 two limits for

the disperson can be given [10]:

(Ywr, €1 =>w=cQwithe, = (YkgT/S(Q)M)*/? the adiabatic sound velocity;
and

(i) wr, > 1 3w = c,Q,c,, = w,/Q where w; is related to the fourth moment
of §(Q,w).

The values ¢, and c,, are indicated in figure 7 for liquid Cs. The shear modulus
and the Maxwell relaxation time can be determined from C,, = 3G, /p and 7y =

7./G o A similar analysis has been performed for liquid Rb [12] leading to similar
results.
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Figure 6. Disperson wm{@Q) of the longitudinal current correlation Jy{Q,w) (open
circles and points are peak positions of 5(Q,w)).

4, General memory function analysis

It was mentioned earlier that the memory function ansatz can be used to extract
information on its - and w-dependence from the experimental S(Q,w) data. One
can rewrite the general expression (4) for S(Q,w) in the form of quadratic equations
for the real and imaginary part of M(Q,w) and solve the equaticns for some specific w-
values, given S(Q,w) [13]. Alternatively one can take a model for M(Q, ) containing
two relaxation times which may extrapolate to the ones for heat diffusion and viscous
damping in the hydrodynamic limit and then fit this model to the data.
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Figure 7. Positive dispersion and solid-like sound propagation in liquid caesium

(rs = V¥/5(Q)v0, co0 = +/3C0a ).

Figure 8 illustrates the results from both techniques for the liquid Cs case. Fitting
and direct evaluation are in reasonable agreement. These data also confirm that, in
contrast to S(Q,w), M(Q,w} is a relatively smooth structureless function over most of
the w-range covered in the experiment, although there is 2 marked variation with Q.
The two relaxation times are, however, quite different: at least one order of magnitude,
as illustrated in figures 9(2) and (&). It is also interesting to look at the @-dependent
relative weight of these two contributions to the memory ansatz, shown in figure 9(¢).

The domination of the short relaxation time around the position of S(Q),,,, is
an indication that in this @ range essentially only one relaxation process survives
and is therefore responsible for the decay of the density fluctuations. The structural
relaxation is much slower than the decay of the fast density fluctuations.
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Figure 8, Relative values of real M/(@,w} (full curve} and imaginary part M*(Q,w)
(broken line} of M(Q,w) from fitting (lines) and direct determination (points).

This is the reason why in a dense liquid in this region the contribution of relaxa-
tions other than structural relaxations can be neglected in the first order and the
structural relaxation can be interpreted as a slow hydrodynamic-like diffusion process.
A description of the central line as a diffusion-like decay process in the frame of the
Enskog model [14] is illustrated in figure 10 giving an Enskog diffusion coefficient
which compares favourably with the self-diffusion coeflicient of liquid caesium.

This dominance of one relaxation time near S(Q),,, Was recently confirmed by
simulations for liquid rubidium where it was also found that the decay rate is slower
than predicted by visco-elastic theories [15] due to mode coupling effects. With respect
to the excitations, a mode] analysis has been performed, e.g. using the generalized
eigenmode expanston following from the kinetic theory of hard sphere fluids [16] and
the excitation spectrum of the density fluctuation can eventually be extracted for all
2. The model can be written

+co
SQuw) =+ Z mf;‘% > A4(QI5QN" = R.(Q) (7)

J==—co

where A;(Q) and 2;(Q) are the complex amplitudes and frequencies of the modes
and the R, (Q) are ’ the frequency moments of S(Q,w). Although this is only an
approximation, a three mode assumption may already give some valuable information.
In the case of rare gas fluids for Q-values around @, the sound mode eigenvalues
turned out to be real leading to a sum of three Lorentzians about w = 0 or a gap in
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Figure 9. Relaxation times ryy and 7 as determined by the fitting procedure de-
scribed in the text. {c} shows the relative weight of the two contributions.
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Figure 10. Halfwidth w2(Q) of the central part of $(Q,w} of liquid caesium
compared with the Enskog model.

the disperson as shown by de Schepper et al [16]. For liquid metals like caesium this
does not seem to be the case as is illustrated in figure 11.

If we assume equality of the real and imaginary parts of the complex frequency as
the limit for propagation, then the observed modes should be propagating ones even
for Q-values beyond @ the position of the maximum structure factor. They come
close to the damping limit around @, and are overdamped much further out. It is not
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surprising that they cannot be seen as reasonable side peaks for @ > 1.1 A-? because
for clear visibility w./z, should be greater than 4 [17].

The direct local memory function analysis leads to more accurate results. If we
express the inverse of M(Q,w) by a normalized function ¢ = ¢y +io,, then a quadratic
equation for ¢y and ¢, can be derived [13]:

noy = (1 — 22)%0% + [o,(1 — 2%) + c2]? (8)

where n = 5(@,0)/5(Q,w), 2 = w/w, and ¢ = w,w5(Q, 0)/5(Q). o, and o, therefore
can be determined at several (6) z-values from the measured data. It turned out
that for liquid caesium the ¢, and ¢ = ¢,/w are only weakly w-dependent for each
Q. One can formulate a criterion for mode damping in terms of these functions and
this is illustrated in figure 12. The hatched line marks the boundary w, = z,. The
determined o-pairs lie outside this damping region. The insert shows the ratio w,/z,
following from the analysis. According to this approach modes should propagate at
all the @-values covered in the experiment.
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Figure I1. ws and wy s from fitting the three-terin approximation of the eigenmode
expansion to the liquid cassium data.

One can compare the mode frequencies of this analysis with the eigenmodes of
a rare gas liguid (with wy as the proper frequency scale) as illustrated in figure 13.
Whereas the rare gas data show a gap at Q; the liquid metal data show a peak which
is an effect restricted in space and time and resembles the residue of an optic mode.

It would be interesting to trace these dramatic differences back to the differences in
the potentials of the two systems.
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5. Conclusions

Improved neutron scattering techniques have made available more accurate data on
simple monatomic liquids, like rare gas liquids and liquid metals. On the other hand
with computer simulations the correlation functions of such systems which often can-
not be measured can be calculated with computer simulations. The combined efforts
are able to reveal details of single-particle motion which is more complex than Brow-
nian diffusion and which can be explained by mode coupling theories. The same
techniques applied to the study of collective atomic motions in liquids outside the
hydrodynamic range have led to deeper insight into their properties. The study of the
transition region now seems to be feasible,

A completion of this picture and a better quantitative understanding of the under-
lying damping mechanisms of motions still needs more effort as well as with computer
sirnulations and theory.
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